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Abstract

Implicit time integration involving the solution of large systems of equations is the current paradigm for time-dependent
radiative transfer. In this paper we present a semi-implicit, linear discontinuous Galerkin method for the spherical harmon-
ics ðP N Þ equations for thermal radiative transfer in planar geometry. Our method is novel in that the material coupling
terms are treated implicitly (via linearizing the emission source) and the streaming operator is treated explicitly using a
second-order accurate Runge–Kutta method. The benefit of this approach is that each time step only involves the solution
of equations that are local to each cell. This benefit comes at the cost of having the time step limited by a CFL condition
based on the speed of light. To guarantee positivity and avoid artificial oscillations, we use a slope-limiting technique. We
present analysis and numerical results that show the method is robust in the diffusion limit when the photon mean-free
path is not resolved by the spatial mesh. Also, in the diffusion limit the time step restriction relaxes to a less restrictive
explicit diffusion CFL condition. We demonstrate with numerical results that away from the diffusion limit our method
demonstrates second-order error convergence as the spatial mesh is refined with a fixed CFL number.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Thermal radiative transfer by X-ray-regime radiation is an intrinsic component of coupled radiation–hydro-
dynamics problems. The independent variables of the transport equation governing thermal radiative transfer
are position, angle, frequency, and time. This dependence on a seven-dimensional phase space leads to expen-
sive memory and computer-time requirements. Additionally, because radiation travels at the speed of light and
the corresponding CFL limit on time-step size for time-explicit schemes is very restrictive, state-of-the-art
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transport methods use implicit schemes, which require the solution of large systems of equations each time step.
For these reasons, radiation–hydrodynamics calculations are often limited to low-order angular approxima-
tions, such as diffusion, for simulating thermal radiative transfer.

Transport methods that are higher order in angle can be classified as either deterministic or stochastic. Of
deterministic methods, the current state-of-the-art is the discrete-ordinates ðSN Þ method utilizing Diffusion
Synthetic Acceleration (DSA) as a preconditioner within a Krylov iterative framework [1]. The most widely
used stochastic, or Monte Carlo, method is the Implicit Monte Carlo (IMC) scheme of Fleck and Cummings
[2]. Deterministic methods based on the second-order form of the radiation-transport equation have also been
developed [3].

Discrete-ordinates methods for thermal radiative transfer have several drawbacks. First and foremost, they
suffer from ray-effects [4]. Also, inverting the transport operator involves performing a cell-based sweep in the
direction of particle travel. Generalizing and parallelizing sweeps on anything but orthogonal, logically rect-
angular meshes is complicated and difficult to implement. Time-dependent calculations require the storage of
angular information, a situation that results in OðN 2Þ unknowns per cell in multidimensional simulations,
where N is the order of the SN approximation.

Finally, the solution procedure for SN schemes is very complex. A typical solution requires an outer itera-
tion (GMRES or Gauss-Seidel) over frequency, and within each outer iteration a set of nested inner iterations
(GMRES or Richardson) that includes sweeps and solving a diffusion equation for DSA preconditioning.
Given that the sweep itself is highly specialized to the mesh topology and parallel decomposition, implemen-
tation can be onerous and is generally not extensible.

Monte Carlo methods provide high angular fidelity; however, they are computationally expensive because
accurate solutions require an adequate sampling of the problem phase space. This requirement is typically
Oð10Þ particles per cell per frequency group. Also, simulations of coupled radiation hydrodynamics that
employ Monte Carlo are difficult to parallelize efficiently because hydrodynamics calculations prefer spatial
decomposition, whereas pure particle Monte Carlo works best with particle decomposition and spatial repli-
cation. Spatially decomposed Monte Carlo methods can suffer from severe load imbalance.

Another technique that has been used to deterministically solve the radiation-transport equation is the P N

method. This method involves expanding the angular dependence of the radiation intensity, the fundamental
unknown of the transport equation, in spherical harmonics. The result is a system of coupled equations for the
angular moments of the radiation intensity. This technique has, until recently, not been considered viable for
multidimensional problems because the transport operator cannot be inverted efficiently [5]. Recent work [6–
10] has shown how implicit time integration with Riemann solvers can be efficiently used for the P N equations.
However, implicit methods for P N are, at present, not as efficient as implicit SN methods. Also, in multidimen-
sional problems the P N equations have nullspace issues with zero eigenvalues that are not advected by an
upwind scheme [11].

The spatial discretization we will be concerned with in this paper is the discontinuous Galerkin method.
This method was first developed by Reed and Hill for solving the neutron transport equation [12]. Cockburn
and Shu showed that using explicit, Runge–Kutta time integration with discontinuous Galerkin spatial dis-
cretization gives a total variation bounded method when a slope limiter is used [13]. Along those lines, Lowrie
and Morel applied the Runge–Kutta discontinuous Galerkin method to radiation hydrodynamics under the
P 1 approximation [14]. Parallel to this work implicit P N methods using a finite volume method were investi-
gated [6–9,15].

Below we develop a semi-implicit method for the P N equations where we time-integrate the streaming terms
explicitly with a second-order accurate Runge–Kutta method and the material-coupling terms implicitly; this
methodology is a generalization of the P 1 discretization in Ref. [14]. We implicitly treat the material-coupling
terms because the material temperature can evolve on a time scale faster than the streaming time scale. The
implicit system is local to each element, and with a linearization of the material coupling terms this implicit
integration is trivial.

A semi-implicit approach was also investigated by Klar [16] and Klar and Unterreiter [17]. Klar pointed out
that a naive semi-implicit approach based on treating the streaming with forward Euler and the material-cou-
pling terms with backward Euler would lead to an unsatisfactory scheme in the diffusion limit [16]. Refs.
[16,17] then presented a splitting scheme that limited to a valid discretization of the asymptotic diffusion equa-
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tion. This splitting scheme expands the intensity into an Oð1Þ even angular component and an Oð�Þ odd angu-
lar component, and uses a finite difference spatial discretization. To integrate time, certain material interaction
terms are integrated implicitly, while all other terms are integrated explicitly. In the diffusion limit, this split-
ting scheme limits to a finite difference approximation with forward Euler time integration.

Our semi-implicit scheme differs from that presented by Klar in several ways. First, we treat all the material-
coupling terms implicitly, where Klar’s method treats the angularly integrated terms explicitly. Our finite ele-
ment formulation is second-order accurate in space and time in the streaming limit, whereas Klar’s is first
order in space and time in the streaming limit. Finally, the discontinuous Galerkin method is widely used
in the radiation transport community because of its robustness in the diffusion limit, therefore our semi-impli-
cit scheme based on discontinuous finite elements can easily be integrated into existing radiation transport
codes.

We were motivated to investigate a semi-implicit method to address the shortcomings of other transport
methods in large-scale radiation–hydrodynamics simulations. While the semi-implicit approach has a CFL
limit for the time-step size based on the speed of light this drawback is mitigated by the fact that, in realistic
radiation–hydrodynamics problems, the time-step size is often limited to Oð10�11 sÞ by the dependence of
material properties on the material temperature. In large-scale problems run on massively parallel architec-
tures, the efficiencies allowed by a semi-implicit approach (for example, very low communication requirements
and ease of spatial decomposition) should make the cost of this new method competitive with existing trans-
port methods. Beyond standard radiation hydrodynamics, we are also interested in fully relativistic radiation
hydrodynamics where the hydrodynamic time scale is on the order of the speed of light. In these problems the
radiation and hydrodynamic time scales are nearly equal, and there is no additional cost to treat radiation
streaming explicitly.

This paper does not present computational cost comparisons between our method and other transport
packages because in one dimension the efficiencies of this approach would not be realized. Rather, the goal
of this paper is to demonstrate that such a method can give stable and accurate results for thermal radiative
transfer.

We will show that the discontinuous Galerkin method with semi-implicit time integration does preserve the
asymptotic diffusion limit of the thermal radiative transfer system – a characteristic that upwind finite volume
P N methods fail to achieve [15]. In this limit, our hyperbolic CFL time-step size restriction is relaxed to the
stability limit of an explicit diffusion discretization similar to that of Klar’s splitting scheme. Also, our time
discretization in the diffusion limit is a one-step scheme rather than the doubly-lagged discretization that
caused Klar to reject the naive semi-implicit discretization of the transport equation [16]. In essence, our
method shows that this naive scheme could be corrected by using second-order accurate Runge–Kutta for
the streaming terms.

We begin this paper with a derivation of the P N equations for thermal radiative transfer. We then develop
our discretization and present the asymptotic diffusion limit of the method. In Section 9 we present tests of the
method on various problems to demonstrate its efficacy and confirm our asymptotic analysis. Finally in Sec-
tion 10 we summarize our results and point out the way forward for extensions of this method.
2. Radiative-transfer equations

We begin with the equations that describe planar geometry thermal radiative transfer in the absence of scat-
tering, external sources, and hydrodynamic motion [18]:
1

c
ow
ot
þ l

ow
ox
þ rw ¼ rB; ð1Þ

oe
ot
¼ 2prðw� BÞdldm: ð2Þ
Here, Eq. (1) is the radiation-transport equation, with wðx; l; m; tÞ the specific intensity, x is the spatial
variable, l ¼ cos h with h the angle between a photon’s direction of flight and the x-axis, m is the photon’s
frequency, and t is the time variable. The opacity is given by rðx; mÞ. Eq. (2) is the material-energy equation
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with e the material internal energy per volume. We define angular moments of the radiation intensity,
w � wðx; l; m; tÞ, as
E ¼ 2p
c

wdldm; ð3Þ

F ¼ 2plwdldm; ð4Þ

P ¼ 2p
c

l2wldm: ð5Þ
In Eqs. (1) and (2), Bðm; T Þ is the Planck function such that
Z
m

B dm ¼ acT 4

4p
: ð6Þ
Here, T is the material temperature in keV, c = 3 � 108 cm s�1 is the speed of light, and
a = 1.372 � 1014 ergs cm�3 keV�4, is the radiation constant. The temperature is related to the internal energy
through an equation of state, eðq; T Þ, where q is the material density. In this study we do not consider hydro-
dynamic motion, so q is constant, and we can rewrite the time derivative in Eq. (2) as
oe
ot
¼ oe

oT
oT
ot
¼ Cv

oT
ot
; ð7Þ
where Cv is the heat capacity at constant volume. For convenience, we operate on Eq. (1) by
R
ð�Þdm and as-

sume r is independent of m to yield the frequency-independent grey transport equation,
1

c
ow
ot
þ l

ow
ox
þ rw ¼ r

acT 4

4p
ð8Þ
and material energy equation,
oe
ot
¼ crðE � aT 4Þ: ð9Þ
Here, w � wðx; l; tÞ. We will be working with the grey form of the radiation-transport equation in the remain-
der of this paper.

2.1. P N equations

We will treat the angular dependence of Eq. (8) by expanding w in Legendre polynomials. This technique
results in the so-called P N equations, expressions that can be thought of as a series of orthonormal angular
moments of Eq. (8). We expand w in Legendre polynomials according to
wðx; l; tÞ ¼
XN

n¼0

2nþ 1

4p
P N ðlÞwnðx; tÞ: ð10Þ
The moments are defined by
wnðx; tÞ ¼ 2p
Z 1

�1

P NðlÞwðx; l; tÞdl: ð11Þ
Now we can equate the moments of w to E, F, and P:
E ¼ 1

c
w0; ð12aÞ

F ¼ w1; ð12bÞ

P ¼ 1

3c
w0 þ

2

3c
w2: ð12cÞ
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Substituting the Legendre polynomial expansion, Eq. (10), into the transport equation, Eq. (8), and using the
orthogonality and recurrence relations for Legendre polynomials allows us to write the P N equations as [19]
1

c
ow0

ot
þ ow1

ox
þ rw0 ¼ racT 4; ð13aÞ

1

c
own

ot
þ o

ox
n

2nþ 1
wn�1 þ

nþ 1

2nþ 1
wnþ1

� �
þ rwn ¼ 0; n > 0: ð13bÞ
These equations represent an unclosed system due to the wnþ1 term in Eq. (13b). The most common closure
employed is to set this term to zero for n ¼ N , i.e. wNþ1 ¼ 0.

In terms of the P N expansion, the material-energy equation is
oe
ot
¼ rðw0 � acT 4Þ: ð14Þ
The material-energy equation added to the P 0 equation, Eq. (13a), gives an equation for the conservation of
energy,
o

ot
ðE þ eÞ þ oF

ox
¼ 0; ð15Þ
that when integrated over a suitable spatial domain implies than any change in the total energy is due to
boundary terms,
o

ot

Z Xþ

X�
dx ðE þ eÞ ¼ F ðX�; tÞ � F ðXþ; tÞ; ð16Þ
where X� and Xþ are the left and right edges of the system, respectively. These equations state that the only
change in the net energy in the system is due to energy crossing the system boundaries.

3. Conservation form

The conservative form for Eq. (13) is
ou

ot
þ ofðuÞ

ox
¼ qðuÞ; ð17Þ
where u is the vector of unknowns, and fðuÞ is the flux vector. In our model fðuÞ is linear such that Eq. (17) can
be written as
ou

ot
þ A

ou

ox
¼ qðuÞ: ð18Þ
We can cast Eq. (13) into this form by defining the following vectors and matrices,
u ¼

w0

w1

w2

..

.

wN

0
BBBBBBB@

1
CCCCCCCA
; A ¼

0 1 . . . . . . . . . . . . 0
1
3

0 2
3

. . . . . . . . . 0

0 2
5

0 3
5

. . . . . . 0

. . . . . . . . . . . . N�1
2N�1

0 N
2N�1

. . . . . . . . . . . . . . . N
2Nþ1

0

0
BBBBBB@

1
CCCCCCA
; qðuÞ ¼

rðacT 4 � w0Þ
�rw1

�rw2

..

.

�rwN

0
BBBBBBB@

1
CCCCCCCA
; ð19Þ
and we have used the closure wNþ1 ¼ 0. The elements of the matrix A can be defined more succinctly,
Ai;j ¼

n
2nþ1

i ¼ n; j ¼ n� 1; n 2 ½1;N �;
nþ1
2nþ1

i ¼ n; j ¼ nþ 1; n 2 ½0;N � 1�;
0 i 6¼ n and j 62 fn� 1; nþ 1g;

8><
>:
8 i; j 2 ½0;N �:

ð20Þ
Thus, each row n 2 ½1;N � 1� has two elements, and the n ¼ 0 and n ¼ N rows each have one element.
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3.1. Eigensystem of A

In order to solve Eq. (18) the eigensystem of A will be required, a system of equations that is given by (see,
for example, [20])
A ¼ RKR�1: ð21Þ
Here K ¼ diagðk0; k1; . . . ; kN Þ is the diagonal matrix of eigenvalues, and the matrix R is the column-wise matrix
of eigenvectors, i.e.,
R ¼ ðr0jr1j . . . jrN Þ: ð22Þ
As an example, the P 1 equations have the following definitions for u, A, and q,
u ¼
w0

w1

� �
; A ¼

0 1
1
3

0

 !
; qðuÞ ¼ rðacT 4 � w0Þ

�rw1

 !
: ð23Þ
The eigenvalue/eigenvector matrices of A for this system are
K ¼
� 1ffiffi

3
p 0

0 1ffiffi
3
p

 !
; R ¼ �

ffiffiffi
3
p ffiffiffi

3
p

1 1

 !
; R�1 ¼

� 1
2
ffiffi
3
p 1

2

1
2
ffiffi
3
p 1

2

 !
: ð24Þ
Higher-order P N equations and corresponding eigensystems can be generated using the definition of the gen-
eral A matrix in Eq. (20). The eigenvalues of a given P N system are the zeros of the Legendre polynomial
P Nþ1ðlÞ [11]. With an eigenvalue denoted by kk, the eigenvectors are given by
rk ¼ ½P 0ðkkÞ; P 1ðkkÞ; . . . ; P N ðkkÞ�T: ð25Þ

For examples of the P 3 and P 5 systems of equations, see Appendix A.

4. Time integration

We apply a semi-implicit approach to Eqs. (18) and (14) that treats the streaming terms explicitly and the
material-coupling terms implicitly. The P N equations we are solving are highly nonlinear due to the presence of
the T 4 term and the coupling to Eq. (14). Two common methods for resolving the nonlinearities are Newton’s
method and a linear Taylor-series expansion (equivalent to 1 partial Newton iteration). As it has been
reported that the linear Taylor-series expansion performs well [21], we will use this technique to implicitly treat
the nonlinearities. Before explaining our linearization, we will discuss our treatment of the streaming terms.

4.1. Predictor–corrector method

We use a predictor–corrector method that is equivalent to second-order accurate Runge–Kutta for the
streaming operator [14]. The second-order Runge–Kutta method for a general ODE, y0ðtÞ ¼ f ðyðtÞ; tÞ, is given
by
ynþ1=2 ¼ yn þ Dt
2

f ðyn; nDtÞ; ð26Þ

ynþ1 ¼ yn þ Dtf ðynþ1=2; ðnþ 1=2ÞDtÞ: ð27Þ
We will use this method for the streaming terms and backward Euler for the material coupling terms. The
predictor step for Eq. (18) becomes
unþ1=2 � cDt
2

qðunþ1=2Þ ¼ un � cDt
2

A
du

dx

����
n

; ð28Þ

enþ1=2 ¼ en þ rDt
2
ðwnþ1=2

0 � acðT nþ1=2Þ4Þ; ð29Þ
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where un ¼ uðx; nDtÞ. The corrector step is
unþ1 � cDtqðunþ1Þ ¼ un � cDtA
du

dx

����
nþ1=2

; ð30Þ

enþ1 ¼ en þ rDtðwnþ1
0 � acðT nþ1Þ4Þ: ð31Þ
In this method the streaming terms are treated with second-order accuracy, while the collision and emission
source terms’ integration is first order. We have made this choice of schemes for robustness in the diffusion
limit. We could treat the collision and emission terms with a second-order accurate implicit method such as
Crank–Nicolson, however, such an approach can lead to oscillatory behavior if the time scale of these terms
is not resolved [14].

4.2. Linearization of emission source

As mentioned at the outset of this section, we are going to treat the nonlinearities in the T 4 terms using the
equivalent of one Newton iteration. To do this linearization, we require a third equation to linearize the
ðT nþ1Þ4 and ðT nþ1=2Þ4 terms in Eqs. (28)–(31). A suitable choice is to expand ðT nþ1Þ4 and enþ1 in a Taylor series
about tn,
enþ1 � en þ Cn
vðT nþ1 � T nÞ þOððT nþ1 � T nÞ2Þ; ð32Þ

ðT nþ1Þ4 � ðT nÞ4 þ 4ðT nÞ3ðT nþ1 � T nÞ þOððT nþ1 � T nÞ2Þ: ð33Þ
Using these equations along with Eq. (31) allows us to write,
ðT nþ1Þ4 � acðT nÞ4 þ rnbnDtwnþ1
0

acð1þ rnbnDtÞ ;
where
bn ¼ 4acðT nÞ3

Cn
v

:

Substituting this expression into q from Eq. (30) yields
qðunþ1Þ ¼

f nrnðacðT nÞ4 � wnþ1
0 Þ

�rnwnþ1
1

�rnwnþ1
2

..

.

�rnwnþ1
N

0
BBBBBBB@

1
CCCCCCCA
; ð34Þ
where the factor f is given by
f n ¼ 1

1þ rnbnDt
: ð35Þ
Making the same substitution in Eq. (31) yields the following discretized, linear form of the material-energy
equation,
enþ1 ¼ en þ f nrDtðwnþ1
0 � acðT nþ1Þ4Þ: ð36Þ
The linearization changes the coupling of the radiation equation to the material-energy equation. After line-
arizing, the radiation-transport equation can be solved for wnþ1

0 because this equation now involves ðT nÞ4 and
does not receive implicit feedback from the material energy equation. Then wnþ1

0 is used to evaluate enþ1. Here
we would like to note that our linearization scheme gives the same effective scattering and absorption terms
equivalent to the Fleck and Cummings Implicit Monte Carlo approach to linearizing the blackbody source [2].
Specifically, the effective absorption is f r and the effective scattering is ð1� f Þr.
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The linearized version of qnþ1=2 is formed in analogous fashion to that above. This expression is similar to
Eq. (34), except the factor f n is evaluated using Dt! 1

2
Dt and the radiation moments are evaluated at time

level nþ 1=2.
Our time-integration method does conserve energy. To demonstrate this point, we sum Eq. (30) for w0 over

all previous time steps to get
wnþ1
0 � w0

cDt
¼ �

Xn

i¼0

dw1

dx

����
iþ1=2

�
Xn

i¼0

f iriðwiþ1
0 � acðT iÞ4Þ: ð37Þ
Similarly, we sum Eq. (31) over all previous time steps:
enþ1 � e0

Dt
¼
Xn

i¼0

f iriðwiþ1
0 � acðT iÞ4Þ: ð38Þ
Adding Eq. (37) to Eq. (38) and integrating over the spatial domain gives the statement of conservation,
1

Dt

Z Xþ

X�
dx ½ðEnþ1 � E0Þ þ ðenþ1 � e0Þ� ¼

Xn

i¼0

½F iþ1=2ðX�Þ � F iþ1=2ðXþÞ�: ð39Þ
This equation states that any change from the initial energy is due to energy entering or exiting through the
boundary, as in the continuous equations.

4.3. Comparison with Klar’s semi-implicit method

Our approach to treating the time variable involves integrating the streaming terms explicitly and the mate-
rial interaction terms implicitly. Klar [16] and Klar and Unterreiter [17] investigated a semi-implicit scheme,
which we shall refer to as the Klar method, that is similar to the one described above. The Klar method first
splits the intensity into an even and odd component in l, then integrates certain terms in the even and odd
parts of the solution differently. For the P N equations the method begins with a predictor step where the
odd part of the solution is frozen and no material-interaction terms are considered:
wnþ1=2
0 ¼ wn

0 � cDt
dw1

dx

����
n

; ð40aÞ

wnþ1=2
l ¼ wn

l � cDt
l

2lþ 1

dwl�1

dx

����
n

þ lþ 1

2lþ 1

dwlþ1

dx

����
n

� �
; l even; ð40bÞ

wnþ1=2
l ¼ wn

l ; l odd: ð40cÞ
This predictor step is then followed by a corrector step,
wnþ1
0 ¼ wnþ1=2

0 � cDtr wnþ1
0 � acðT nþ1Þ4

� �
; ð41aÞ

wnþ1
l ¼ wnþ1=2

l � cDtrwnþ1
l ; l even; ð41bÞ

wnþ1
l ¼ wnþ1=2

l � cDt
l

2lþ 1

dwl�1

dx

����
nþ1

þ lþ 1

2lþ 1

dwlþ1

dx

����
nþ1

� �
� cDtrwnþ1

l ; l odd: ð41cÞ
In the context of the P N equations, the Klar method is a first-order predictor–corrector approach. By treating
the even and odd moments differently, the Klar method is robust in the diffusion limit, even when a finite dif-
ference method is used for the spatial discretization. Our semi-implicit scheme is second-order accurate for the
streaming term. We treat the even and odd moments of the intensity in the same fashion and rely on our spa-
tial discretization to give a robust diffusion limit (that is, we need to use discontinuous Galerkin finite elements
to obtain a valid diffusion limit, whereas Klar’s method is accurate in the diffusion limit with a finite difference
scheme), as we will show later on in this study. In some sense it is easier to extend our approach to multi-
dimensional problems because we need not generalize the notion of even and odd moments of the transport
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equation to higher dimensions; such a generalization would necessitate a further splitting of the time-integra-
tion operator as there would be terms that are even or odd in the azimuthal and polar angles.

Despite the differences between our approach and that advocated by Klar, our method is surprisingly sim-
ilar to a naive scheme rejected by Klar [16]. This simple time-integration scheme is
Fig. 1.
within
unþ1 � cDtqðunþ1Þ ¼ un � cDtA
du

dx

����
n

: ð42Þ
This method uses forward Euler for the radiation streaming and backward Euler for the material interaction
terms. Klar rejects this method because in the diffusion limit it limits to a discretization of the time-dependent
diffusion equation where the spatial-derivative term is evaluated at the n� 1 time step. This time-integration
scheme has a smaller domain of stability and is less accurate than the standard explicit diffusion discretization.
Our method is similar to that of Eq. (42) except that we use second-order accurate Runge–Kutta for the
streaming term. Below, we show that by using second-order Runge–Kutta, we obtain a valid diffusion limit.

5. Spatial solution method

We will spatially discretize Eq. (18) using the discontinuous Galerkin (DG) finite element method [12,13].
We will then apply the time discretization that we detailed above to get the fully discrete system of equations
that we solve numerically. We apply the DG method to Eq. (18) by first multiplying this equation by a basis
function and integrating over a cell,
1

c
ot

Z
V k

Bk;iudxþ A½Bk;iu� � A

Z
V k

uoxBk;i dx ¼
Z

V k

Bk;iqðuÞdx: ð43Þ
Here, Bk;iðxÞ is the ith basis function of cell k and V k is the ‘‘volume” (actually length, in this 1-D case) of the
kth element. Also, ½�� � ð�Þkþ1=2 � ð�Þk�1=2, where the subscripts ‘‘kþ1=2;k�1=2” refer to the right and left bound-
aries, respectively, of V k. The unknown uðx; tÞ is expressed in terms of the basis functions as
uðx; tÞ ¼
XNk

k¼1

XNp

j¼1

uk;jðtÞBk;jðxÞ; ð44Þ
where Nk is the number of spatial cells in the domain. In planar geometry N p ¼ p þ 1 with p equal to the poly-
nomial order of the basis functions (for example, Np ¼ 2 for linear basis functions). Also, for the basis func-
tions we use, each cell has N p nodes, that is points in the cell were a basis function is unity. An example
discretized mesh with linear basis functions is illustrated in Fig. 1.

If we substitute Eq. (44) into Eq. (43) and expand the q as in (44), then the result is N p ordinary differential
equations per cell in terms of the unknowns uk;jðtÞ, 1 6 j 6 Np. Specifically, we obtain for a particular cell
1

c
Mk;i;j

d

dt
uk;j þ A½Biu� � Kk;i;jAuk;j ¼ Mk;i;jqðuk;jÞ; 1 6 i 6 Np; ð45Þ
where
Mk;i;j ¼
Z

V k

Bk;iBk;j dx; Kk;i;j ¼
Z

V k

Bk;joxBk;i dx; ð46Þ
and we sum over the repeated j subscript.
Discretized planar-geometry mesh. The k indices refer to a particular cell, while the second subscript refers to a particular node
that cell. Each cell has two nodes in the case of linear basis functions.
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Generally, the expansion in Eq. (44) is discontinuous across cell boundaries. To ensure conservation, the
same value for Aukþ1=2 must be used for cell k and k þ 1. Let ukþ1=2;L be the boundary value from cell k

and ukþ1=2;R the value from cell k þ 1. Then we ‘‘upwind” [20] to find Aukþ1=2:
Aukþ1=2 ¼ A�ukþ1=2 �
1

2
jAjDukþ1=2 ð47Þ
where
�ukþ1=2 ¼
1

2
ðukþ1=2;L þ ukþ1=2;RÞ; ð48Þ

Dukþ1=2 ¼ ukþ1=2;R � ukþ1=2;L; ð49Þ
jAj ¼ RjKjR�1: ð50Þ
This way of defining Aukþ1=2 upwinds in the sense that positive eigenvalues move information from the left to
the right ðuk;2 ! ukþ1=2Þ and negative eigenvalues move information from the right to the left ðuk;1 ! uk�1=2Þ.
For the planar-geometry equations this upwinding makes our discrete P N equations equivalent to the DG
method for the discrete-ordinates equations with Gaussian quadrature.

As an example of our upwinding, for P 1 we obtain
Aukþ1=2 ¼
�w1

1
3

�w0

 !
kþ1=2

� 1

2
ffiffiffi
3
p

Dw0

Dw1

� �
kþ1=2

: ð51Þ
5.1. Linear basis functions

In this subsection, we develop the method for linear basis functions. There are two basis functions ðN p ¼ 2Þ
that are defined on a generic cell xk � Dxk=2 6 x 6 xk þ Dxk=2, where xk is the cell center and Dxk is the cell size,
as
B1;kðxÞ ¼
xk þ Dxk

2
� x

Dxk
; B2;kðxÞ ¼

x� xk þ Dxk
2

Dxk
: ð52Þ
With this choice, Eq. (44) gives that uk;1ðtÞ is the value on the left side of the cell, while uk;2ðtÞ is the value on the
right side. Eq. (45) then becomes
1

c
Mk;i;j

d

dt
uk;j þ di;2ðAuÞkþ1=2 � di;1ðAuÞk�1=2 � Kk;i;jAuk;j ¼ Mk;i;jqðuk;jÞ; i ¼ 1; 2 ð53Þ
with
Mk ¼
Dxk

6

2 1

1 2

� �
; Kk ¼

1

2

�1 �1

1 1

� �
; ð54Þ

di;1 ¼
1

0

� �
; di;2 ¼

0

1

� �
: ð55Þ
The matrix M is known as mass matrix. Multiplying through by M�1 gives
1

c
d

dt
uk;1 þ

�2ðAuÞkþ1=2 � 4ðAuÞk�1=2 þ 3Aðuk;1 þ uk;2Þ
Dxk

¼ qðuk;1Þ; ð56Þ

1

c
d

dt
uk;2 þ

2ðAuÞk�1=2 þ 4ðAuÞkþ1=2 � 3Aðuk;1 þ uk;2Þ
Dxk

¼ qðuk;2Þ: ð57Þ
Adding these equations gives the correct balance equation,
1

2c
d

dt
ðuk;1 þ uk;2Þ þ

ðAuÞkþ1=2 � ðAuÞk�1=2

Dxk
¼ 1

2
ðqðuk;1Þ þ qðuk;2ÞÞ; ð58Þ
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a statement that the time evolution of the average value of u in a cell is the result of the net inflow plus the
source. Furthermore, this is a conservative balance equation. We now have enough information to solve
Eq. (45).

We also apply the expansion in Eq. (44) to T 4 and e in the material-energy equation to get
d

dt
ek;j ¼ rðw0;k;j � acðT k;jÞ4Þ; j ¼ 1; 2: ð59Þ
The fully discrete equations are obtained by applying the time discretization presented in Section 4 to Eqs. (56)
and (57) to get

Predictor step
1

c

u
nþ1=2
k;1 þ un

k;1

Dt=2
þ
�2ðAuÞnkþ1=2 � 4ðAuÞnk�1=2 þ 3Aðun

k;1 þ un
k;2Þ

Dxk
¼ qðunþ1=2

k;1 Þ; ð60aÞ

1

c

u
nþ1=2
k;2 þ un

k;2

Dt=2
þ

2ðAuÞnk�1=2 þ 4ðAuÞnkþ1=2 � 3Aðun
k;1 þ un

k;2Þ
Dxk

¼ qðunþ1=2
k;2 Þ: ð60bÞ
Corrector step
1

c

unþ1
k;1 þ un

k;1

Dt
þ
�2ðAuÞnþ1=2

kþ1=2 � 4ðAuÞnþ1=2
k�1=2 þ 3Aðunþ1=2

k;1 þ u
nþ1=2
k;2 Þ

Dxk
¼ qðunþ1

k;1 Þ; ð61aÞ

1

c

unþ1
k;2 þ un

k;2

Dt
þ

2ðAuÞnþ1=2
k�1=2 þ 4ðAuÞnþ1=2

kþ1=2 � 3Aðunþ1=2
k;1 þ u

nþ1=2
k;2 Þ

Dxk
¼ qðunþ1

k;2 Þ: ð61bÞ
These equations will be governed by a CFL limit for the time step size. This time-step limit is [13]
cDt
Dx
6

1

3
: ð62Þ
Satisfying this CFL condition will give a stable update in any regime. As we shall see though, in diffusive prob-
lems there is a less restrictive time step limit.

6. Slope limiting

The linear discontinuous finite element discretization described above is a linear, second-order accurate
spatial discretization. Such a linear, second-order scheme for a hyperbolic system like the P N equations will
allow the creation of artificial oscillations in the solution: this fact is a result of Godunov’s Theorem [20].
To prevent oscillations, we will use a slope-limiting method [13]. Alternatively, we could lump the mass matrix
[22]; this process would add numerical dissipation to damp oscillations. However, lumping does not suppress
all oscillations, and the lumped equations are less accurate than their unlumped counterparts.

After each step (either predictor or corrector) we first compute an average in each cell,
�uk ¼
1

2
uk;2 þ uk;1ð Þ; ð63Þ
and then change the node values for the cell to be
~uk;1 ¼ �uk �
sk

2
and ~uk;2 ¼ �uk þ

sk

2
:

Here, the slope is calculated on an cell-by-cell and moment-by-moment basis using
sl;k ¼Mðul;k;2 � ul;k;1; að�ul;k � �ul;k�1Þ; að�ul;kþ1 � �ul;kÞÞ; ð64Þ

for a 2 ½0; 2�, and M, the minmod function, given by
Mða; b; cÞ ¼
minða; b; cÞ signðaÞ ¼ signðbÞ ¼ signðcÞ;
0 otherwise:

�
ð65Þ
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Choosing a ¼ 0 causes the cell-edge values to equal their average; this method is the first-order upwind, Godu-
nov scheme. In the transport literature, this method is also known as the ‘‘step” scheme because the values in
each cell are flat and discontinuous at a cell interface. The step scheme is known to not be accurate in the dif-
fusion limit [23] and will not be considered further here. With a ¼ 1 the limiter is identical to the minmod lim-
iter [20]. When a ¼ 2 we have the monotonized center or double minmod limiter [24]. In this case the edge
values in cell k are no bigger than the average value of either neighbor’s average value. Unless otherwise sta-
ted, we will use a ¼ 2 for the remainder of our study.

7. Boundary conditions

At problem boundaries we must specify the incoming intensity. Brunner and Holloway studied different
boundary conditions for upwind discretizations of the P N equations and determined that the Mark boundary
condition implemented with ghost cells yields a good combination of performance and straightforward imple-
mentation [25]. Later, it was shown that it is possible to specify a reflecting boundary using ghost cells [8]. To
specify a boundary condition using ghost cells, cells are placed just outside the physical system boundary
where we specify the moments of the incoming intensities. This process treats the system boundary in an iden-
tical manner as an interface between interior cells. This treatment is appropriate because our upwind discret-
ization moves information in the appropriate directions – in this case moving only from the ghost cell into the
physical system.

8. The asymptotic limit of the discrete equations

We now present an analysis of our numerical method in the equilibrium diffusion limit [26]. To analyze the
behavior of the method in this limit, we will scale different terms in the equations using a small parameter
�� 1 and constant Dt. The diffusion limit corresponds to the situation where the mean-free time of a photon
is Oð�2) compared with the time scale over which u and e vary by Oð1Þ, and the mean-free path is Oð�Þ com-
pared with the length scale over which u and e vary by Oð1Þ. To achieve this situation we will scale the absorp-
tion opacity by ��1, the heat capacity by �, and the speed of light by ��1. For consistency the internal energy is
also scaled by �. The time step size, Dt, is considered to be an Oð1Þ quantity because we are interested in the
case where we approach the diffusion limit with a fixed time step. The scaling of these parameters was intro-
duced in Ref. [26] and has been used several times in the past [27–29] to analyze radiation transport methods.
In the equilibrium diffusion limit, to leading order in � the thermal radiative-transfer system is replaced by a
diffusion equation for the material temperature,
oeð0Þ

ot
þ a

o

ot
ðT ð0ÞÞ4 ¼ o

ox
ac
3r

o

ox
ðT ð0ÞÞ4; ð66Þ
and the zeroth angular moment (proportional to the radiation energy density) is described by a Planck func-
tion at the local temperature,
wð0Þ0 ¼ acðT ð0ÞÞ4; ð67Þ

and to first order in � the first angular moment of the radiation intensity is given by Fick’s law,
F ð1Þ ¼ wð1Þ1 ¼ �
ac
3r

o

ox
T ð0Þ
	 
4

: ð68Þ
In Eqs. (66)–(68) the superscripts indicate terms in an asymptotic series (see Eq. (71)).
For a numerical method for thermal radiative transfer to be ‘‘asymptotic preserving” (also referred to as

having the diffusion limit), the method must give a valid discretization of Eq. (66) and enforce the condition
in Eq. (67). When a method does preserve this limit, it is possible to use cells that are optically thick (i.e., many
mean-free paths thick) and still obtain accurate solutions. Methods not having a valid diffusion limit will give
erroneous results when the mean-free path is not resolved, even when the spatial variation of the solution is
resolved. In realistic thermal radiative-transfer problems, resolving the mean-free path requires prohibitively
small cell sizes and is not practical.
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In the remainder of this section, we will examine our method in the asymptotic limit away from boundary
and initial layers to see if the method gives a valid discretization of Eq. (66). In the interest of clarity we will
restrict our analysis to the situation of constant r and Cv. This analysis will be similar to that of Larsen and
Morel [30] for the linear discontinuous Galerkin method applied to the planar-geometry SN equations in
steady state. This similarity is due to the fact that, in slab geometry, the P N equations are equivalent to SN

with Gauss–Legendre quadrature [19]. While there are similarities in the planar-geometry case, we believe this
analysis will be useful for future work with the multidimensional P N equations. We do not include the effects of
the slope limiter in our analysis because of its non-smooth character. Later, the effect of the slope limiter will
be included in numerical results.

We begin by scaling the radiation equations for the corrector step,
�

c

unþ1
k;1 � un

k;1

Dt
þ
�2Au

nþ1=2
kþ1=2 � 4Au

nþ1=2
k�1=2 þ 3Aðunþ1=2

k;1 þ u
nþ1=2
k;2 Þ

Dx

¼
�

bn
k;1Dt ðacðT n

k;1Þ
4 � wnþ1

0;k;1Þ þOð�3Þ l ¼ 0;

���1rwnþ1
l;k;1 l 6¼ 0:

8<
: ð69aÞ

�

c

unþ1
k;2 � un

k;2

Dt
þ

4Au
nþ1=2
kþ1=2 þ 2Au

nþ1=2
k�1=2 � 3Aðunþ1=2

k;1 þ u
nþ1=2
k;2 Þ

Dx

¼
�

bn
k;2Dt acðT n

k;2Þ
4 � wnþ1

0;k;2

� �
þOð�3Þ l ¼ 0;

���1rwnþ1
l;k;2 l 6¼ 0:

8<
: ð69bÞ
In the l ¼ 0 equation we have used the fact that under our scaling [27]
f r! ��1r
1þ ��2brDt

¼ �

bDt
þOð�3Þ:
The equations for the predictor step are scaled in an identical way to Eqs. (69). The discrete material energy
equation is
enþ1
k;j ¼ en

k;j þ b�1ðwnþ1
0;k;j � acðT n

k;jÞ
4Þ: ð70Þ
We now postulate an expansion of u, e, and T 4 in �,
ð�Þ ¼
X1
k¼0

�mð�ÞðmÞ; ð71Þ
and substitute this expansion into the scaled P N equations. The equations at Oð��1Þ are
wð0Þ;nþ1=2
l;k;j ¼ wð0Þ;nþ1

l;k;j ¼ 0; l 6¼ 0 and j ¼ 1; 2: ð72Þ
Therefore, all the moments greater than zero vanish to leading order. At Oð1Þ the material energy equations
tell us that the leading order zeroth-moment is in equilibrium with the linearized blackbody source, i.e.,
wð0Þ;nþ1
0;k;j ¼ acðT ð0Þ;nk;j Þ

4 þ 4acðT ð0Þ;nk;j Þ
3ðT ð0Þ;nþ1

k;j � T ð0Þ;nk;j Þ; j ¼ 1; 2: ð73Þ
We note that the right side of Eq. (73) is a second-order-in-Dt approximation to acðT nþ1Þ4 so that
wð0Þ;nþ1
0;k;j ¼ acðT ð0Þ;nþ1

k;j Þ4 þOðDt2Þ: ð74Þ
The l ¼ 0 radiation equations for the corrector step at Oð1Þ are
�2A0u
ð0Þ;nþ1=2
kþ1=2 � 4A0u

ð0Þ;nþ1=2
k�1=2 þ 3A0ðuð0Þ;nþ1=2

k;1 þ u
ð0Þ;nþ1=2
k;2 Þ

Dx
¼ 0; ð75aÞ

4A0u
ð0Þ;nþ1=2
kþ1=2 þ 2A0u

ð0Þ;nþ1=2
k�1=2 � 3A0ðuð0Þ;nþ1=2

k;1 þ u
ð0Þ;nþ1=2
k;2 Þ

Dx
¼ 0: ð75bÞ
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The predictor step equations are identical except nþ 1=2! n. In the above equations we have denoted the
zeroth matrix row by the subscript 0. These equations can be simplified by using the structure of the matrix
A. This matrix has the form
A ¼

0 1 0 . . .
1
3

0 2
3

0 . . .

0 2
5

0 3
5

0 . . .
l

2lþ1
0 lþ1

2lþ1
0 . . .

. .
. . .

. . .
.

0 . . .

0
BBBBBBB@

1
CCCCCCCA
: ð76Þ
Thus, the product of A and the leading order vector of intensity moments is
Auð0Þ ¼

0
1
3
wð0Þ0

0

..

.

0
BBBB@

1
CCCCA ð77Þ
The element-by-element structure of jAj is given in the following expression:
jAji;j ¼
0 modði; 2Þ 6¼ modðj; 2Þ;
ai;j otherwise;

�
ð78Þ
for some non-zero ai;j. Using the structure of Auð0Þ and jAji;j, Eqs. (75a) and (75b) become
� jAj0;0ðw
ð0Þ;nþ1=2
0;kþ1;1 � wð0Þ;nþ1=2

0;k;2 Þ � 2jAj0;0ðw
ð0Þ;nþ1=2
0;k;1 � wð0Þ;nþ1=2

0;k�1;2 Þ ¼ 0; ð79aÞ
2jAj0;0ðw

ð0Þ;nþ1=2
0;kþ1;1 � wð0Þ;nþ1=2

0;k;2 Þ þ jAj0;0ðw
ð0Þ;nþ1=2
0;k;1 � wð0Þ;nþ1=2

0;k�1;2 Þ ¼ 0: ð79bÞ
These equations are a linear system of homogeneous equations with full rank, therefore, the solution space to
this system is zero dimensional and only contains the zero vector [31]. This fact makes uð0Þ continuous at a cell
edge. In this asymptotic scaling the discontinuous finite element method becomes a continuous finite element
method to leading order,
u
ð0Þ;n
k;2 ¼ u

ð0Þ;n
kþ1;1; ð80aÞ

u
ð0Þ;nþ1=2
k;2 ¼ u

ð0Þ;nþ1=2
kþ1;1 : ð80bÞ
The higher moment equations ðl > 0Þ for the corrector step at Oð1Þ are
�2Alu
ð0Þ;nþ1=2
kþ1=2 � 4Alu

ð0Þ;nþ1=2
k�1=2 þ 3Alðuð0Þ;nþ1=2

k;1 þ u
ð0Þ;nþ1=2
k;2 Þ

Dx
¼ �rwð1Þ;nþ1

l;k;1 ; ð81aÞ

4Alu
ð0Þ;nþ1=2
kþ1=2 þ 2Alu

ð0Þ;nþ1=2
k�1=2 � 3Alðuð0Þ;nþ1=2

k;1 þ u
ð0Þ;nþ1=2
k;2 Þ

Dx
¼ �rwð1Þ;nþ1

l;k;2 : ð81bÞ
Once again using the structure of the A and jAj, these equations simplify to
wð1Þ;nþ1
1;k;j ¼ �

wð0Þ;nþ1=2
0;k;2 � wð0Þ;nþ1=2

0;k;1

3rDx
; ð82aÞ

wð1Þ;nþ1
l;k;j ¼ 0; l > 1; ð82bÞ
for j ¼ 1; 2. Similarly, the predictor step equations give
wð1Þ;nþ1=2
1;k;j ¼ �

wð0Þ;n0;k;2 � wð0Þ;n0;k;1

3rDx
; ð83aÞ

wð1Þ;nþ1=2
l;k;j ¼ 0; l > 1; ð83bÞ
for j ¼ 1; 2.
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The l ¼ 0 equations for the corrector step to Oð�Þ are
1

c

wð0Þ;nþ1
0;k;1 � wð0Þ;n0;k;1

Dt
þ
�2A0u

ð1Þ;nþ1=2
kþ1=2 � 4A0u

ð1Þ;nþ1=2
k�1=2 þ 3A0ðuð1Þ;nþ1=2

k;1 þ u
ð1Þ;nþ1=2
k;2 Þ

Dx

¼ 1

bn
k;1Dt

ðacðT ð0Þ;nk;1 Þ
4 � wð0Þ;nþ1

0;k;1 Þ; ð84aÞ

1

c

wð0Þ;nþ1
0;k;2 � wð0Þ;n0;k;2

Dt
þ

4A0u
ð1Þ;nþ1=2
kþ1=2 þ 2A0u

ð1Þ;nþ1=2
k�1=2 � 3A0ðuð1Þ;nþ1=2

k;1 þ u
ð1Þ;nþ1=2
k;2 Þ

Dx

¼ 1

bn
k;2Dt

ðacðT ð0Þ;nk;2 Þ
4 � wð0Þ;nþ1

0;k;2 Þ: ð84bÞ
To proceed we will define a cell average of u or e, �ð�Þk, as
�ð�Þk ¼
1

2
ðð�Þk;1 þ ð�Þk;2Þ; ð85Þ
and the difference across a cell, ûk, as
^ð�Þk ¼
1

2
ðð�Þk;2 � ð�Þk;1Þ: ð86Þ
We can manipulate Eqs. (84) to give expressions involving �uk and ûk:
A0u
ð1Þ;nþ1=2
kþ1=2 � A0u

ð1Þ;nþ1=2
k�1=2

Dx
¼ ��eð0Þ;nþ1

k � �eð0Þ;nk

Dt
� 1

c

�wð0Þ;nþ1
0;k � �wð0Þ;n0;k

Dt
; ð87aÞ

A0u
ð1Þ;nþ1=2
kþ1=2 þ A0u

ð1Þ;nþ1=2
k�1=2

Dx
¼ A0�u

ð1Þ;nþ1=2
k

Dx
� êð0Þ;nþ1

k � êð0Þ;nk

3Dt
� 1

3c

ŵð0Þ;nþ1
0;k � ŵð0Þ;n0;k

Dt
; ð87bÞ
where we have used Eq. (70) to replace the material interaction term with the temporal difference of the inter-
nal energy. By adding Eq. (87a) over cell k and k þ 1 we get
A0u
ð1Þ;nþ1=2
kþ3=2 � A0u

ð1Þ;nþ1=2
k�1=2

Dx
¼ ��eð0Þ;nþ1

kþ1 þ �eð0Þ;nþ1
k � �eð0Þ;nkþ1 � �eð0Þ;nk

Dt
� 1

c

�wð0Þ;nþ1
0;kþ1 þ �wð0Þ;nþ1

0;k � �wð0Þ;n0;kþ1 � �wð0Þ;n0;k

Dt
: ð88Þ
Next we subtract Eq. (87b) for cell k from that equation for k þ 1 to get
A0u
ð1Þ;nþ1=2
kþ3=2 � A0u

ð1Þ;nþ1=2
k�1=2

Dx
¼ A0ð�uð1Þ;nþ1=2

kþ1 � �u
ð1Þ;nþ1=2
k Þ

Dx
� êð0Þ;nþ1

kþ1 � êð0Þ;nþ1
k � êð0Þ;nkþ1 þ êð0Þ;nk

3Dt

þ 1

3c

ŵð0Þ;nþ1
0;kþ1 � ŵð0Þ;nþ1

0;k � ŵð0Þ;n0;kþ1 þ ŵð0Þ;n0;k

Dt
: ð89Þ
Upon equating Eqs. (88) and (89), we get the equation
�A0ð�uð1Þ;nþ1=2
kþ1 � �u

ð1Þ;nþ1=2
k Þ

Dx

¼
ð�eð0Þ;nþ1

kþ1 � 1
3
êð0Þ;nþ1

kþ1 Þ þ ð�eð0Þ;nþ1
kþ1 þ 1

3
êð0Þ;nþ1

k Þ � ð�eð0Þ;nkþ1 � 1
3
êð0Þ;nkþ1 Þ � ð�e

ð0Þ;n
k þ 1

3
êð0Þ;nk Þ

Dt

þ 1

c

ð�wð0Þ;nþ1
0;kþ1 � 1

3
ŵð0Þ;nþ1

0;kþ1 Þ þ ð�w
ð0Þ;nþ1
0;k þ 1

3
ŵð0Þ;nþ1

0;k Þ � ð�wð0Þ;n0;kþ1 � 1
3
ŵð0Þ;n0;kþ1Þ � ð�w

ð0Þ;n
0;k � 1

3
ŵð0Þ;n0;k Þ

Dt
: ð90Þ
To get a diffusion equation we use a relation that results from our discrete version of Fick’s law, Eq. (83a),
A0u
ð1Þ;nþ1=2
k;j ¼ wð1Þ;nþ1=2

1;k;j ¼ � 1

3rDx
ðwð0Þ;n0;k;2 � wð0Þ;n0;k;1Þ: ð91Þ
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Using this relation we get the equation
1

3rDx2
ðwð0Þ;n0;kþ1;2 � 2wð0Þ;n0;k;2 þ wð0Þ;n0;k;1Þ

¼
ð�eð0Þ;nþ1

kþ1 � 1
3
êð0Þ;nþ1

kþ1 Þ þ ð�eð0Þ;nþ1
kþ1 þ 1

3
êð0Þ;nþ1

k Þ � ð�eð0Þ;nkþ1 � 1
3
êð0Þ;nkþ1 Þ � ð�e

ð0Þ;n
k þ 1

3
êð0Þ;nk Þ

Dt

� 1

c

ð�wð0Þ;nþ1
0;kþ1 � 1

3
ŵð0Þ;nþ1

0;kþ1 Þ þ ð�w
ð0Þ;nþ1
0;k þ 1

3
ŵð0Þ;nþ1

0;k Þ � ð�wð0Þ;n0;kþ1 � 1
3
ŵð0Þ;n0;kþ1Þ � ð�w

ð0Þ;n
0;k � 1

3
ŵð0Þ;n0;k Þ

Dt
: ð92Þ
To simplify this equation we will define a weighted average, �ð�Þ,
�ð�Þk;2 � �ð�Þ0;kþ1 �
1

3
^ð�Þ0;kþ1 þ ð �ð�Þ0;k þ

1

3
^ð�Þ0;kÞ

� �
¼ 1

6
ð�Þ0;kþ1;2 þ

2

3
ð�Þ0;k;2 þ

1

6
ð�Þ0;k;1: ð93Þ
Using Eq. (74) and the weighted average definition makes Eq. (92) to OðDt2Þ
ac
T ð0Þ;nkþ1;2

� �4

� 2ðT ð0Þ;nk;2 Þ
4 þ ðT ð0Þ;nk;1 Þ

4

3rDx2
¼

�eð0Þ;nþ1
k;2 � �eð0Þ;nk;2

Dt
þ a
ð�T ð0Þ;nþ1

k;2 Þ4 � ð�T ð0Þ;nk;2 Þ
4

Dt
: ð94Þ
This equation is a valid discretization of the equilibrium diffusion equation, Eq. (66), and thus our linear dis-
continuous Galerkin P N method preserves the asymptotic diffusion limit. We note that in this limit the predic-
tor and corrector steps are decoupled in the sense that the nþ 1 time-level quantities do not depend on the
nþ 1=2 time-level quantities, and the time discretization becomes equivalent to forward Euler.

The above asymptotic analysis can also be performed for the case where Dt is a Oð�Þ quantity, the so-called
intermediate limit [23]. In this limit our method limits to the same discretization of the equilibrium diffusion
equations as Eq. (94).

8.1. Stability analysis of the discrete asymptotic limit

In the diffusion limit the predictor–corrector method transitions to the forward Euler method. To examine
the stability of the discrete diffusion equation, Eq. (94), we will perform a von Neumann analysis on a linear
version of this equation (for an example of this analysis on finite difference methods, see [32]),
En
kþ1;2 � 2En

k;2 þ En
k;1

3rDx
¼ 1

c

�Enþ1
k;2 � �En

k;2

Dt
: ð95Þ
We now decompose the solution into individual Fourier modes
En
k;1 ¼ amðnDtÞAm expðimðk � 1ÞDxÞ; ð96aÞ

En
k;2 ¼ amðnDtÞAm expðimkDxÞ; ð96bÞ

En
kþ1;2 ¼ amðnDtÞAm expðimðk þ 1ÞDxÞ: ð96cÞ
We also define the growth rate between the steps as
gm ¼
amððnþ 1ÞDtÞ

amðnDtÞ : ð97Þ
Under the Fourier decomposition, the weighted average �Ek;2 becomes
�En
k;2 ¼ amðnDtÞAm expðimkDxÞ 1

6
expðimDxÞ þ 2

3
þ 1

6
expð�imDxÞ

� �
: ð98Þ
Now Eq. (95) is
gm � 1

cDt
1

6
expðimDxÞ þ 2

3
þ 1

6
expð�imDxÞ

� �
¼ 1

3rDx
ðexpðimDxÞ � 2þ expð�imDxÞÞ: ð99Þ
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This equation can be simplified using the following definition:
2 cosðmDxÞ ¼ expðimDxÞ þ expð�imDxÞ: ð100Þ
Eq. (99) then reduces to
gm � 1

cDt
2

3
þ 1

3
cosðmDxÞ

� �
¼ 2

3rDx
ðcosðmDxÞ � 1Þ: ð101Þ
The growth rate is then
gm ¼ 1þ 2cDt
3rDx

cosðmDxÞ � 1
2
3
þ 1

3
cosðmDxÞ : ð102Þ
This equation is equivalent to
gm ¼ 1þ 2mC; ð103Þ

where we have defined
m ¼ cDt
3rDx2

; ð104Þ

C ¼ cosðmDxÞ � 1
2
3
þ 1

3
cosðmDxÞ : ð105Þ
The magnitude of gm is largest when C ¼ �6, a situation that makes Eq. (103)
jgmj 6 j1� 12mj: ð106Þ

Setting jgmj ¼ 1 and solving for m yields m ¼ f0; 1=6g. At m ¼ 1=6 the slope of jgmj is positive. This fact means
that if m is less than 1/6, the growth rate is stable. The stability condition is then
1

3rDx
cDt
Dx
6

1

6
: ð107Þ
This expression is a CFL condition for an explicit diffusion equation, and it is less restrictive than the stream-
ing-limit time-step limit of Eq. (62) for optically thick problems. This condition is less restrictive because in the
diffusion limit we scale rDx as Oð��1Þ. The time step allowed by Eq. (107) will be greater than the streaming
limit as long as rDx > 2=3. Klar’s method [16,17] has a CFL limit similar to the one above except with the
right side being 1=2 rather than 1=6.

We note that in our implementation, to solve a problem that has optically thick and optically thin regions
we are forced to use the more restrictive hyperbolic CFL limit of Eq. (62).

9. Numerical results

In our numerical results, unless otherwise stated we have chosen the time step based on the formula
Dt ¼ ðCFLÞDt
c

with the most common choice being CFL ¼ 0:3.

9.1. Streaming in a vacuum

The first problem we test our method on has photons propagating through a vacuum. In this problem we
use P 1, and on the left boundary we specify the incoming characteristics corresponding to w0 ¼ w1 ¼ 1; this
boundary condition is a P 1 approximation to a right-going beam. On the right boundary we specify that
the incoming characteristics are zero.

The exact P 1 solution to this problem is w0 ¼ 0:5ð1þ
ffiffiffi
3
p
Þhðx� ctÞ, where hðzÞ is the Heaviside step func-

tion. Fig. 2 shows the effect of changing the slope limiter on the solution. Without a slope limiter, there are
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Fig. 2. Vacuum propagation problem solutions at t ¼ 2:5� 10�11 s for the double minmod limiter versus the unlimited solution. These are
all P 1 solutions with Dx ¼ 0:01 cm and Dt ¼ 1� 10�13 s ðCFL ¼ 0:3Þ.
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oscillations that allow the energy density to become less than zero. The limiter eliminates these oscillations. We
note that if the energy density is negative in a problem with non-zero opacity, the material temperature could
become negative and cause problems with the equation of state of the material.
9.2. Diffusive Marshak-wave problem

The next problem we examine is a Marshak-wave problem consisting of a semi-infinite medium of material
with an opacity given by r ¼ 300=T 3, where the units of r are cm�1 and T are keV. We specify an incoming
isotropic distribution corresponding to a 1 keV temperature source on the boundary at x ¼ 0; there is no
incoming radiation on the right boundary. The heat capacity in this problem is constant with a value of
0:3� 1016 erg= cm3=keV. There is a semi-analytic equilibrium–diffusion solution, and we compare this solu-
tion to the numerical results. In this problem, we expect the diffusion solution and the transport solution
to be the same because the problem is so absorption dominated that the material energy and radiation energy
should be in equilibrium. For our numerical solution we use an initial condition of T ðx; 0Þ ¼ 10�9 keV and
Eðx; 0Þ ¼ acðT ðx; 0ÞÞ4.

Fig. 3 shows numerical results compared to the semi-analytic solution for the Marshak-wave problem. The
numerical solution uses a optically thick spatial grid with each cell spanning at minimum 9 mean-free paths
and as many as 4:8� 1030 mean-free paths. In the 10:0� 10�8 s solution the average cell thickness is 37 mean-
free paths. We do not use larger cells because a coarser grid can not resolve the shape of the solution.

To get the numerical solutions in Fig. 3, we used a time step 10 times the CFL limit for the pure streaming
problem (see Eq. (62)). We choose this time step based on the fact that our asymptotic analysis applies to this
problem and in this limit, we have a larger time-step restriction given by Eq. (107).
9.3. Marshak wave in thin medium

Fig. 4 shows numerical results from an identical Marshak-wave problem except with an optically thinner
background medium ðr ¼ 3=T 3 cm�1Þ. This figure gives the radiation temperature as

ffiffiffiffiffiffiffiffi
E=c4

p
. In this thin prob-
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lem there are transport effects, and the diffusion solution is not adequate. We compare different P N approxi-
mations to a P 99 solution in Fig. 5. Our error is quantified using the L2 norm
L2ðT � T refÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Nx

XNx

k¼1

X2

i¼1

ðT k;i � T ref;k;iÞ2
vuut ; ð108Þ
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Fig. 5. Error in different P N approximations as compared to the P 99 solution. All numerical solutions used Dx ¼ 5� 10�3 cm and
CFL ¼ 0:3.
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where Nx is the number of spatial cells and the sum over i represents the unknowns in a cell. In this problem
the error in the P N expansion decreases as OðN 2Þ as N increases. For an infinitely smooth function, the con-
vergence rate of the spherical harmonics expansion is exponential. The fact that in this problem the conver-
gence rate is second order suggests that the radiation intensity is non-smooth in its third derivative with
respect to the direction of flight, l.

Using this thin problem also allows us to measure the error convergence for the spatial scheme. To measure
the error we use an L2 norm given by the following formula:
L2ðT � T refÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N x

XNx

k¼1

ðT avg
k � T avg

ref;kÞ
2

vuut ð109Þ
with
T avg
k ¼ 1

2
ðT k;1 þ T k;2Þ: ð110Þ
We use cell averages because we want to project the reference solution onto coarser grids. Each numerical
solution has Nx ¼ 2m for some positive integer m. Our reference solution has Nx ¼ 2048 ðm ¼ 11Þ. Fig. 6 shows
that the method is first order on the thin Marshak-wave problem. This problem has a non-smooth solution
that is causing the method to have first-order convergence in space.

9.4. ‘‘Smooth” Marshak wave

The standard Marshak wave is not a good problem to show the order of accuracy of a method because the
solution is not smooth. A better problem to demonstrate the order of accuracy of our semi-implicit method
has a smooth initial condition of
Eðx; 0Þ ¼ acþ ðac� 0:04Þ 1þ tanh½50ðx� 0:25Þ�
2

ð111Þ
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and
Fig. 7.
CFL ¼
T ðx; 0Þ ¼ Eðx; 0Þ
ac

� �1=4

: ð112Þ
This initial condition was previously used by Lowrie to analyze time-discretization schemes for the diffusion
equation [21]. The boundary conditions are the same as for the previous Marshak-wave problems and we have
r ¼ 3=T 3 cm. Given this form of r the problem has regions that are diffusive and optically thick (the cold
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Temperature initial condition and solution at 1� 10�9 s for the smooth wave problem. The solution has Dx ¼ 4� 10�4 cm and
0:3.
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regions of the problem) as well as optically thin regions where the material temperature is higher. The initial
condition and solution to this problem at t ¼ 1� 10�9 s are shown in Fig. 7.

Solutions using different values of Dx are shown in Fig. 8. Upon inspecting these results, we see that the
impact of refining the spatial grid is superior tracking of the wavefront. The slowly varying part of the solution
is captured accurately for all cell sizes shown; it takes smaller mesh spacing to correctly place the wavefront.
The detail of this wavefront is shown in Fig. 9.

The L2 error convergence results are shown in Fig. 10. The error in this case is the difference between a solu-
tion and the reference solution with Nx ¼ 2048. The procedure for calculating the error is the same as in the
convergence study above. The results on this convergence plot shows that the error convergence approaches
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Fig. 8. Nodal values of the material temperature at 1� 10�9 s for the smooth wave problem with CFL ¼ 0:3 and different values of Dx.
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Fig. 9. Detail of the wavefront in the smooth wave problem at 1� 10�9 s.
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second order as the cell size and time step are decreased. In these results we had to obey the hyperbolic CFL
condition because there are optically thin regions in the problem. Despite having to obey this more restrictive
condition, we do observe second-order error convergence in time, whereas in diffusive problems our time inte-
gration error decays only at first order.

10. Conclusions

We have presented a linear discontinuous Galerkin method for the P N equations. Our method uses a semi-
implicit time-integration scheme that treats the streaming terms explicitly with second-order accurate Runge–
Kutta and the material-coupling implicitly with backward Euler and a linearized emission source. The benefit
of this approach is that each time step can be computed cheaply at the expense of having a CFL restriction for
the time-step size.

Our method does preserve the asymptotic diffusion limit of the radiative transfer system: a fact that we
demonstrated through analysis and numerical results. Previous upwind P N methods that used a finite volume
approach did not have this property [15]. Also, in this limit, the CFL limit is relaxed, and we produced accu-
rate results for a diffusive Marshak-wave problem at 10 times the CFL limit for the unscaled equations. In the
future we will examine the DG method in two and three dimensions to confirm that the method retains the
asymptotic diffusion limit.

On an optically thin Marshak-wave problem, the method converged at a second-order rate in the order of
the P N expansion and is first-order accurate in space and time. Although we would expect our method to be
second order as Dx and Dt are decreased, this convergence rate was not observed for this problem. This result
was most likely due to the non-smooth wavefront of the solution in this problem. We were able to show sec-
ond-order convergence for both the radiation energy density and the material temperature in an optically thin
problem with a smooth initial condition. On these problems away from the diffusion limit we must obey a
hyperbolic CFL restriction on the time step size.

We plan on extending this method to multiple dimensions to ferret out the possible efficiencies of the semi-
implicit approach. We believe that some of the problems encountered by other transport methods in parallel,
multi-dimensional simulations can be addressed using our scheme. For the above method, domain decompo-
sition and complicated mesh structures (for example dendritic meshes or non-convex cells) do not appear to
pose significant problems. If this postulate holds true in practice, our method will be a competitive means for
solving large-scale radiative-transfer problems – despite the speed-of-light-based CFL restriction.
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Appendix A. The P3 and P5 equations

A.1. P 3 equations

The P 3 equations have the following definitions for u, A, and q:
u ¼

w0

w1

w2

w3

0
BBBB@

1
CCCCA; A ¼

0 1 0 0

1
3

0 2
3

0

0 2
5

0 3
5

0 0 3
7

0

0
BBBB@

1
CCCCA; q ¼

rðacT 4 � w0Þ
�rw1

�rw2

�rw3

0
BBBB@

1
CCCCA: ðA:1Þ
The eigenvalue/eigenvector matrices of A for this system are
K ¼

�0:861136 0 0 0

0 0:861136 0 0

0 0 �0:339981 0

0 0 0 0:339981

0
BBBB@

1
CCCCA; ðA:2Þ

R ¼

�3:28141 3:28141 2:42879 �2:42879

2:82574 2:82574 �0:825742 �0:825742

�2:00932 2:00932 �0:793289 0:793289

1 1 1 1

0
BBBB@

1
CCCCA; ðA:3Þ

R�1 ¼

�0:0530038 0:136931 �0:16228 0:113069

0:0530038 0:136931 0:16228 0:113069

0:134253 �0:136931 �0:219248 0:386931

�0:134253 �0:136931 0:219248 0:386931

0
BBBB@

1
CCCCA: ðA:4Þ
For P 3, it is useful to have the following matrix:
1

2
jAj ¼

0:260634 0 0:277519 0

0 0:371641 0 0:166512

0:0555039 0 0:339925 0

0 0:0713621 0 0:228917

0
BBBB@

1
CCCCA: ðA:5Þ
A.2. P 5 equations

The P 5 equations have the following definitions for u, A, and q:
u ¼

w0

w1

w2

w3

w4

w5

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; A ¼

0 1 0 0 0 0

1
3

0 2
3

0 0 0

0 2
5

0 3
5

0 0

0 0 3
7

0 4
7

0

0 0 0 4
9

0 5
9

0 0 0 0 5
11

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; q ¼

rðacT 4 � w0Þ
�rw1

�rw2

�rw3

�rw4

�rw5

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ðA:6Þ
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The eigenvalue/eigenvector matrices of A for this system are
K ¼

�0:93247 0 0 0 0 0

0 0:93247 0 0 0 0

0 0 �0:661209 0 0 0

0 0 0 0:661209 0 0

0 0 0 0 �0:238619 0

0 0 0 0 0 0:238619

0
BBBBBBBB@

1
CCCCCCCCA
; ðA:7Þ

R ¼

�4:86116 4:86116 3:39679 �3:39679 �2:98847 2:98847

4:53288 4:53288 �2:24599 �2:24599 0:713107 0:713107

�3:90958 3:90958 0:529209 �0:529209 1:239 �1:239

3:05402 3:05402 0:914129 0:914129 �0:968151 �0:968151

�2:05143 2:05143 �1:45466 1:45466 �0:524962 0:524962

1 1 1 1 1 1

0
BBBBBBBB@

1
CCCCCCCCA
; ðA:8Þ

R�1 ¼

�0:0176218 0:0492953 �0:0708614 0:0774962 �0:0669285 0:0398752

0:0176218 0:0492953 0:0708614 0:0774962 0:0669285 0:0398752

0:0531034 �0:105337 0:0413664 0:100037 �0:204672 0:171967

�0:0531034 �0:105337 �0:0413664 0:100037 0:204672 0:171967

�0:0782864 0:0560419 0:162284 �0:177533 �0:123768 0:288158

0:0782864 0:0560419 �0:162284 �0:177533 0:123768 0:288158

0
BBBBBBBB@

1
CCCCCCCCA
: ðA:9Þ
In addition we have
1

2
jAj ¼

0:254974 0 0:298390 0 �0:0680521 0

0 0:374329 0 0:148788 0 �0:0378067

0:0596779 0 0:320784 0 0:135782 0

0 0:0637664 0 0:322171 0 0:150928

�0:00756134 0 0:0754342 0 0:340391 0

0 �0:0103109 0 0:0960452 0 0:219649

0
BBBBBBBB@

1
CCCCCCCCA

ðA:10Þ
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